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A numerical study of two-dimensional conjugate natural convection in a horizontal cylindrical annulus
formed between an inner heat generating solid square cylinder and an outer isothermal circular bound-
ary is performed. The two orientations considered for the inner solid square cylinder are the square-on-
side (SOS) and the square-on-edge (SOE). A cylindrical annulus with an inner solid circular cylinder (CC)
of equivalent heat generation is also studied for the purpose of comparison. The flow equations cast in
vorticity-stream function form and the energy equations are solved using numerical methods. The steady
state results show that the flow in the annulus is characterized by double or quadruple vortex patterns.
Of the dimensionless maximum solid temperature, average solid temperature and average inner bound-
ary temperature, the first two are much sensitive to solid-to-fluid thermal conductivity ratio. The depen-
dence of the average Nusselt number on the average inner boundary temperature based Grashof number
is found to be in good agreement with the heat transfer data computed for differentially heated annuli
with isothermal boundaries, within the parametric space covered. Correlations as functions of Grashof
number are developed for the estimation of various quantities of interest for different configurations,
aspect ratios and thermal conductivity ratios. The results are expected to be useful in the design of ther-
mal systems such as the spent nuclear fuel casks and underground transmission cables.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Natural convection heat transfer is an inexpensive, reliable and
noise-free method of heat removal and has been a subject of inten-
sive research due to its technological applications ranging from nu-
clear reactors, thermal storage systems, cooling of electronic
components, aircraft fuselage insulation to underground electrical
transmission cables. In particular, natural convection in horizontal
annuli has received considerable attention in the literature because
of the fundamental nature of the geometry. Isothermal wall bound-
ary conditions have been much studied compared to isoflux
conditions.

Natural convection heat transfer in the gap between the hori-
zontal concentric isothermal cylinders has been first investigated
experimentally by Beckmann (1931) with air, hydrogen, carbon
dioxide as the test fluids in order to obtain the overall heat transfer
coefficient. An important contribution in the measurement of the
temperature field in the gap between two horizontal isothermal
cylinders filled with air has been made by Grigull and Hauf
(1966) using a Mach-Zehnder interferometer. Kuehn and Goldstein
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(1976a,b, 1978, 1980) have performed further investigations on
natural convection in horizontal annulus experimentally and
numerically to determine the influence of Rayleigh number, Pra-
ndtl number, diameter ratio and eccentricity. Farouk and Güc�eri
(1982) have presented numerical solutions for the steady-state,
two-dimensional laminar and turbulent natural convection be-
tween two horizontal isothermal concentric cylinders. Chang et
al. (1983) have analysed the natural convection heat transfer in
an enclosure formed by concentric isothermal square inner and cir-
cular outer cylinders, using the Galerkin finite element method.
Boyd (1983) has theoretically studied the natural convection heat
transfer across an annulus with a circular outer boundary and an
irregular inner boundary. Boyd (1984) has also reported an exper-
imental study using Mach-Zehnder interferometer, with a hexago-
nal inner cylinder, oriented such that two of the six surfaces are
horizontal. Tsui and Tremblay (1984) have numerically solved
the transient natural convection heat transfer problem between
two horizontal isothermal cylinders, applicable to underground
electrical transmission line. Transient natural convection in this
geometry was also studied numerically and experimentally by Cas-
trejon and Spalding (1988). Shu et al. (2001) have numerically
studied the natural convective heat transfer in a horizontal eccen-
tric annulus between an isothermal square outer and a heated iso-
thermal circular inner cylinder using differential quadrature (DQ)
method.
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Nomenclature

a thermal diffusivity (m2 s�1)
A aspect ratio [ratio of the side of inner square cylinder to

the diameter of the outer cylinder, S/(2Ro)]
Ac cross-sectional area of the inner solid cylinder, (m2)
Aib surface area per unit axial length of the inner cylinder

(m2 m�1)
c specific heat capacity, (J kg�1 K�1)
g acceleration due to gravity (m s�2)
Gr heat generation based Grashof number ½¼ ðg bDTR3

oÞ=m2
f ;

DT ¼ _Qv R2
o=kf �

GrT temperature based Grashof number ½¼ ðg bDTR3
oÞ=m2

f ;

DT ¼ Tav;ib � Tr�
i, j grid point indices
n normal distance (m)
Nu Nusselt number
P perimeter (m)
Pr Prandtl number
Ri equivalent radius of the inner cylinder (m)
Ro radius of the outer cylinder (m)
Ra Rayleigh number(=Gr � Pr)
_q heat flux (W m�2)
_Qv volumetric heat generation (W m�3)
S side of the inner square cylinder (m)
t time (s)
T temperature (K)
u, v velocities in the x- and y-directions (m s�1)
vr, vh velocities in the radial and tangential directions (m s�1)

Greek symbols
a heat transfer coefficient (W m�2 K�1)
b volumetric expansion coefficient (K�1)
g dynamic viscosity (Pa s)
h angular coordinate (radians)
k thermal conductivity (W m�1 K�1)
m kinematic viscosity (m2 s�1)
n distance along cylinder surface (m)
q density (kg m�3)
/x, /y angles between gravity vector and x- and y-axes, respec-

tively (radians)
w stream function (m2 s�1)
x vorticity (s�1)

Subscripts
av average
eq equivalent
l local
max maximum
ib, ob inner and outer boundaries, respectively
r reference
s, f solid and fluid, respectively

Superscript
� dimensionless quantity
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Few studies have considered isoflux inner wall boundary condi-
tion. Kumar (1988) and Kumar and Keyhani (1990) have studied
the natural convection heat transfer in horizontal annuli with inner
and outer cylinders maintained at constant heat flux and temper-
atures, respectively. Yoo (1998, 1999a,b) has made systematic
investigations on the Prandtl number dependence of natural con-
vective flows in horizontal annuli with a heated (isoflux) inner cyl-
inder and an isothermally cooled outer cylinder. Transitions of
natural convection in an annulus between horizontal isothermal
cylinders have been theoretically investigated by Mizushima et
al. (2001) by obtaining bifurcation diagrams of steady solutions.
Dual free convective flows in a horizontal annulus formed by an in-
ner cylinder maintained at constant heat flux and the outer cylin-
der isothermally cooled have been numerically investigated by Yoo
(2003) for fluids of Prandtl number in the range 0.2–1.

Rotem (1972) has studied the conjugate free convection in a
horizontal annulus using a series expansion technique. The inner
cylinder core carries either a line source along its axis or a distrib-
uted heat source or both and the outer cylinder is maintained at a
constant temperature. Bubnovich and Kolesnikov (1986), Kolesni-
kov and Bubnovich (1988) and Lacroix and Joyeux (1996) have
numerically studied the conjugate problem of natural convection
in horizontal annuli to investigate the influence of the finite con-
ductance of the cylinder walls.

Natural convection in annuli driven by an inner heat generating
cylinder has received very less attention in the past. Such problems
arise in applications like transportation and storage of spent nucle-
ar fuel casks, underground transmission cables and in other ther-
mal energy systems, where there’s a continuous heat generation.
For instance, spent nuclear fuel casks contain one or more canisters
of circular, square or hexagonal cross-section, containing bundles
of fuel rods arranged in triangular or square arrays. Our problem
deals with modelling of one such canister as a heat generating solid
with an equivalent thermal conductivity, as the natural convection
in the fill gas is often negligible. Methods of calculating equivalent
thermal conductivity of such arrays of tubes or rods have been pre-
sented by Manteufel and Todreas (1994).

The objective of the present work is to numerically investigate
the conjugate natural convection in a horizontal annulus formed
by a heat generating inner cylinder of square cross-section and
an isothermal circular outer cylinder and to find the temperature
and the velocity distributions in the annulus as well as the temper-
ature field in the square solid. The results presented are steady-
state results obtained from time-dependent formulations by time
marching. For comparison, the case of a heat generating solid cir-
cular cylinder of equal cross-sectional area is also computed. In
addition, the natural convection in differentially heated annuli
with isothermal boundaries is computed for all the configurations.
From the results of the conjugate problem, the average inner
boundary temperature is determined and the equivalent Grashof
number based on the average inner boundary and outer boundary
temperature difference is calculated. The variation of the average
Nusselt number with this Grashof number is compared with the
heat transfer data of differentially heated annuli and a good agree-
ment is found between the two sets of results.
2. The physical model and the coordinate system

The physical model and the coordinate system for the present
work are shown in Fig. 1a. A circular cylinder, ABCDA, of radius
Ro, is located in the first quadrant in such a way that the coordinate
axes are tangential to it with the positive direction of the x-axis to-
wards right and the positive direction of the y-axis vertically up-
wards as shown. The quantities î and ĵ are the unit vectors along
the x- and y-directions. EFGHE is a solid square cylinder of side S,
located concentrically inside the circular cylinder. For generality,
the gravity vector ~g is shown to make angles /x and /y with the
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Fig. 1. The physical model and coordinate system for the annulus with (a) inner
solid square cylinder and (b) inner solid circular cylinder.
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x- and y-directions respectively. The annulus is assumed to be suf-
ficiently long so that the flow and the temperature fields can be ta-
ken as invariant along the z-direction, neglecting the end effects.
Two orientations of the inner cylinder are considered, namely,
the SOS (Square-On-Side, /x = 90� and /y = 180�) and the SOE
(Square-On-Edge, /x = 45� and /y = 135�). The cartesian coordinate
system is chosen to describe the geometry for the SOS and SOE
configurations.

At times less than or equal to zero, the fluid inside the annulus
is quiescent with uniform temperature at Tr. For times greater than
zero, the inner solid square begins to generate heat with a volu-
metric heat generation rate of _Qv, which is transferred to the fluid,
whereas the outer cylinder is isothermally cooled with the temper-
ature maintained at To = Tr.

In order to compare the results of the conjugate natural convec-
tion in the horizontal annulus formed between a square inner and
a circular outer cylinder, computations are also performed for the
horizontal circular cylindrical annulus (denoted as CC), obtained
by replacing the inner solid square cylinder with a heat generating
solid circular cylinder of equivalent cross-sectional area, EFGHE of
radius Ri as shown in Fig. 1b. This problem is described in cylindri-
cal coordinates with the gravity vector acting vertically down-
wards and êr and êh denoting the unit vectors along r- and h-
directions, respectively. The azimuthal angle h is measured from
OB in the counter-clockwise direction. However, the governing
equations are presented only in cartesian coordinates (for the
SOS and SOE cases) for brevity. The governing equations in cylin-
drical coordinates are available, for example, in Kuehn and Gold-
stein (1976a). The solid energy equation can be obtained from
the fluid energy equation by choosing zero velocities and setting
the properties to those of the solid.

3. Formulation

3.1. Governing equations

The flow and temperature distributions are assumed to be
two-dimensional and are governed by continuity, Navier–Stokes,
and fluid and solid energy equations. The radiative heat transfer,
viscous dissipation and compressibility effects of air are considered
to be negligible. The effect of density variation causing the
buoyancy force is taken into account through the Oberbeck-
Boussinésq approximation. Other thermophysical properties of
the fluid and those of solid are assumed to be independent of
temperature.

The vorticity transport, stream function and fluid and solid en-
ergy equations in dimensionless form for the SOS and SOE cases
are:

ox�

ot�
þ o

ox�
ðu�x�Þ þ o

oy�
ðv�x�Þ

¼ o2x�

ox�2
þ o2x�

oy�2

 !
þ Gr

oT�f
oy�

cos /x � Gr
oT�f
ox�

cos /y; ð1Þ

o2w�

ox�2
þ o2w�

oy�2
¼ �x�; ð2Þ

oT�f
ot�
þ o

ox�
ðu�T�f Þ þ

o

oy�
ðv�T�f Þ ¼

1
Pr

o2T�f
ox�2

þ o2T�f
oy�2

 !
ð3Þ

q�sc�s
oT�s
ot�
¼ k�s

Pr
o2T�s
ox�2

þ o2T�s
oy�2

 !
þ 1

Pr
; ð4Þ

where k�s is the solid-to-fluid thermal conductivity ratio and

x� ¼ ov�

ox�
� ou�

oy�
; u� ¼ ow�

oy�
; v� ¼ � ow�

ox�
: ð5Þ

The system of non-dimensionalisation is

t� ¼ tmf

R2
o

; x� ¼ x
Ro
; y� ¼ y

Ro
; u� ¼ uRo

mf
; v� ¼ vRo

mf
;

x� ¼ xR2
o

mf
; w� ¼ w

mf
; q�s ¼

qs

qf
; c�s ¼

c s

cp;f
; k�s ¼

ks

kf
;

T� ¼ ðT � TrÞ
DT

; DT ¼
_QvR2

o

kf
; Gr ¼ gbDTR3

o

m2
f

; Pr ¼ gf cp;f

kf
:

ð6Þ
3.2. Initial and boundary conditions

The initial conditions at t* = 0 correspond to a quiescent state
with uniform temperature. At t* > 0, no-slip hydrodynamic condi-
tion exists on the inner and outer boundaries of the annulus. The
thermal boundary conditions at the solid–fluid interface are the
heat flux continuity and no temperature jump, which can be writ-
ten as:

k�s
oT�s
on�s
¼ oT�f

on�f
; T�s ¼ T�f ; ð7Þ

For the CC case, the condition at the center is that the temperature
remains finite. In view of the symmetry of flow and temperature
fields for the SOS, SOE and CC cases, the dimensionless stream func-
tion on both the surfaces of the annulus is taken as zero (for exam-
ple, Rotem, 1972; Tsui and Tremblay, 1984; Chmaissem et al.,
2002). The vorticity on the inner and outer boundaries is calculated
using Eq. (5).
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3.3. Nusselt numbers

The local Nusselt number Nul,ib is given by:

Nul;ib �
al;ibRo

kf
¼ � 1

T�av;ib

oT�f
on�f

� �
l;ib

¼
_q�l;ib

T�av;ib
: ð8Þ

The average Nusselt number Nuav,ib on the inner boundary is given
by:Z

ib
al;ib ðTav;ib � TrÞdnib ¼

Z
ib
�kf

oT f

onf

� �
l;ib

dnib ¼ _QvS2; ð9Þ

i:e:;
Z

ib
Nul;ib T�av;ib dn�ib ¼

Z
ib
� oT�f

on�f

� �
l;ib

dn�ib ¼ S�2; ð10Þ

where n�ib is the dimensionless distance measured along the periph-
ery of the inner boundary from the bottom-most point (i.e., mid-
point of the bottom surface in SOS, bottom corner in SOE and lowest
point in CC) in the counter-clockwise direction.

The above equation takes the form:

Nuav;ib ¼
1

P�ib

Z
ib

Nul;ib dn�ib ¼
1

P�ib

Z
ib
� 1

T�av;ib

oT�f
on�f

� �
l;ib

dn�ib ¼
S�2

T�av;ib P�ib
; ð11Þ

where P�ib and T�av;ib are the dimensionless perimeter and the dimen-
sionless average temperature on the inner boundary.

Similarly, the average Nusselt number Nuav,ob on the outer
boundary is given by:

Nuav;ob ¼
1

P�ob

Z
ob

Nul;ob dn�ob ¼
1

P�ob

Z
ob
� 1

T�av;ib

oT�f
on�f

� �
l;ob

dn�ob ¼
S�2

T�av;ib P�ob
; ð12Þ

where n�ob is the dimensionless distance measured along the circum-
ference of the outer boundary from the bottom-most point in the
counter-clockwise direction. P�ob is the dimensionless perimeter of
the outer boundary.

The relation between the average Nusselt numbers on the inner
and the outer boundaries is obtained from the Eqs. (11) and (12):

P�ib Nuav;ib ¼ P�ob Nu av;ob ¼
S�2

T�av;ib
: ð13Þ

The above definitions of Nusselt numbers also apply to the CC case
for which P�ib ¼ 2pR�i and pR�2i ¼ S�2, where R�i ¼ Ri=Ro.
4. Method of solution

4.1. Mesh generation

The two orientations of the inner square cylinder, SOS and SOE,
yield configurations that are symmetric about the vertical line
passing through the center of the square as can be seen from Fig.
1a. The symmetry lines for the SOS and SOE configurations are
respectively AC and the line passing through the diagonal HF.
Keeping this in view, the grid is generated in such a way that it
can be used for both the configurations by suitably deploying the
gravity vector.

For the SOS configuration, the gravity vector is along the direc-
tion OsK. Considering the quarter circle AOsB, the projections of the
point F determine the points I0 and K0. The line OsF, when extended,
meets the curved boundary at J0. The projections of I0, J0 and K0

determine respectively I, P; J, Q and K, W. AI is divided into the re-
quired number of mesh spacings, say a, and the corresponding
points are successively projected on to curved segment AI0 and
from there to OsP. Similarly, IJ is divided into the required number
of mesh spacings, say b, and the corresponding points are succes-
sively projected on to the curved segment I0J0 and from there to
PQ. The distributions of points on OsP and PQ are transferred onto
the segments OsK and KJ in the same order, which are in turn used
to generate the points on QW and WB respectively. The nodes are
generated as mirror images in the other quadrants.

When the spacings are uniform in the segments AI and IJ, a non-
uniform spacing results in the segments OsP and PQ because of the
non-linear nature of the outer circle. In order to have a control on
the distribution of grid points in either direction, the mesh in each
of these segments is generated with the help of the one-dimen-
sional, inverse hyperbolic function based transformation of Roberts
(1971). Typical grids for the aspect ratios 0.2 and 0.4 are shown in
Figs. 2a and b, respectively.

4.2. Discretisation

The steady-state results are obtained as the long-time solu-
tions to time-dependent equations using finite difference tech-
niques. A numerical formulation is developed by discretizing
the governing equations. The convective terms are discretized
by the donor-cell method (Torrance and Rockett, 1969; Vafai
and Ettefagh, 1990). The diffusive terms are discretized with cen-
tral differences using second-order accurate analogues. The
boundary vorticity for the SOS and SOE cases is evaluated using
definition of vorticity in terms of velocities. For the CC case,
Thom’s boundary vorticity conditioning is employed (Roache,
1998). The local fluid temperature gradients are evaluated with
third-order accurate finite difference representations at the points
on the inner boundary for all the configurations. For the outer
boundary, second-order accurate expressions for the local tem-
perature gradient in each direction are used to obtain the normal
temperature gradient for the SOS and SOE configurations, while
for the CC configuration, third-order accurate expressions are em-
ployed. The numerical quadrature is performed using the high-
accuracy scheme of Gill and Miller (1972).

For the CC configuration, in order to resolve the center point
singularity, the solid energy equation in cartesian form is discret-
ized at the center of the inner solid circle with the first grid circle
radius as the mesh spacing. Choosing the number of the angular
spacings as a multiple of four, such discretized equations are writ-
ten for all the required mutually perpendicular orientations of the
radial lines and are summed up. The relation for the center temper-
ature is obtained from the summed up discretized equations.

The heat flux continuity condition can be discretized directly
using two-point one-sided differences. However, such a discretiza-
tion, while neglecting the thermal capacitance of solid and fluid
each half cell width, does not also account for the heat generation
in half cell width region in the solid. In view of this, a four-cell
method is devised for the numerical treatment of the interface
temperature, which does not suffer from these drawbacks and
which implicitly accounts for the heat flux continuity. The method
of calculating the interface temperature is briefly presented in the
Appendix. For the numerical treatment of the solid–fluid interface
in the CC case, a two-cell method, the development of which is
similar to the four-cell method, is employed.

4.3. Solution procedure

A segregated solution approach is adopted, which consists in
solving the discretised equations of energy, vorticity and stream
function equations in succession for each time step with a point
Gauss-Seidel iterative method. Sufficient number of global itera-
tions on the set of equations are performed over each time step
for better coupling of velocity and temperature fields. The time
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Fig. 2. Typical grid for the SOS/SOE configurations for (a) A = 0.2 (121 � 121) and (b) A = 0.4 (161 � 161).

Table 1
Comparison of the present solutions with the results of Chang et al. (1983)

Orientation A Ra k�eq Present
solutions

k�eq Chang et al.
(1983)

% Deviation

SOS 0.2 1.0 � 103 1.035 1.003 3.2
5.0 � 103 1.393 1.346 3.5
1.0 � 104 1.712 1.644 4.1
5.0 � 104 2.676 2.457 8.9
1.0 � 105 3.157 2.846 10.9

SOE 0.2 1.0 � 103 1.045 1.004 4.1
5.0 � 103 1.411 1.346 4.8
1.0 � 104 1.743 1.647 5.8
5.0 � 104 2.727 2.482 9.8
1.0 � 105 3.247 2.900 11.9

SOS 0.4 1.0 � 103 1.007 1.002 0.5
5.0 � 103 1.064 1.043 2.0
1.0 � 104 1.159 1.126 2.9
5.0 � 104 1.934 1.617 19.6
1.0 � 105 2.344 1.991 17.7

SOE 0.4 1.0 � 103 1.007 1.002 0.5
5.0 � 103 1.072 1.046 2.4
1.0 � 104 1.187 1.153 2.9
5.0 � 104 1.818 1.762 3.1
1.0 � 105 2.226 2.142 3.9
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step is chosen as a multiple (typically 50) of that obtained from the
combined Courant-Friedrichs-Lewy and diffusion number restric-
tions as shown in Roache (1998) applicable to explicit methods.
A relative convergence criterion of 5 � 10�5 on the maximum
dimensionless temperature is chosen for the global iteration pro-
cess at each time step. The criterion for the attainment of steady-
state is that the relative difference of the maximum temperature
in the domain over 50 time steps should be less than 10�6. The en-
ergy balances on the inner and outer boundaries with respect to
the total heat generation are used as additional checks for the
attainment of steady-state. The heat transfer rates across the inner
and outer boundaries are obtained by integration of the local fluid
temperature gradient around the respective peripheries. To obtain
faster convergence to steady-state, the quantity q�s c�s is set equal to
unity.

The results from the derived variable (vorticity-stream func-
tion) approach have been verified against those predicted by a
pressure correction algorithm on a collocated mesh (Kim and
VanOverbeke, 1991) and an excellent agreement has been found
between the two approaches.

4.4. Calculation of energy balance

The heat generation _Q gen in the inner solid cylinder is S*2. The
heat transfer rate _Q ib across the inner cylinder is given by:

_Q ib ¼
Z

ib
� oT�

on�

� �
l;ib

dn�ib: ð14Þ

Similarly, the heat transfer rate across the outer boundary can be
written as:

_Q ob ¼
Z

ob
� oT�

on�

� �
l;ob

dn�ob: ð15Þ

The derivative oT*/on* in the above expression is evaluated as the
scalar product of ~rT� and the unit normal vector n̂� directed to-
wards the outer boundary, where ~r is the dimensionless gradient
operator in cartesian coordinates. The unit normal vector is
ðx� � x�c Þ̂iþ ðy� � y�c Þ̂j, where (x*, y*) is any point on the outer
boundary and ðx�c; y�cÞ are the coordinates of the center of the inner
solid cylinder. The relative energy balances EBib and EBob on the in-
ner and the outer boundaries are determined by the expressions
j _Qgen � _Q ibj= _Qgen and j _Qgen � _Qobj= _Qgen, respectively. The energy
balance for the CC case is calculated in a similar manner.
4.5. Code validation

A computer program is developed and run on the ALPHA work
stations at the Supercomputer Education and Research Center, In-
dian Institute of Science, Bangalore, India. All the calculations are
performed with the double-precision arithmetic, for which the
word length is 32 bits.

To ensure the correctness of the program for the SOS and SOE
configurations, the code is validated with the results reported by
Chang et al. (1983). Table 1 presents a comparison of the present
results for the overall equivalent thermal conductivity k�eq (defined
as the ratio of the average Nusselt number on the inner boundary
to that for an equivalent pure-conduction case), with those of
Chang et al. (1983). The results for the pure conduction case are ob-
tained by setting the Rayleigh number to zero. The present equiv-
alent thermal conductivity values agree well with the results of
Chang et al. (1983) in most cases.

The computer program for the circular cylindrical annulus, CC
has been validated with the results of Kuehn and Goldstein



Table 2
Comparison of the present solutions for cylindrical annulus (CC) with the results of
Kuehn and Goldstein (1976a)

Ra Location k�eq Present
solutions

k�eq Kuehn and Goldstein
(1976a)

% Deviation

102 Inner 1.002 1.000 0.20
Outer 1.002 1.002 0.00

103 Inner 1.088 1.081 0.67
Outer 1.088 1.084 0.39

3 � 103 Inner 1.396 1.404 0.57
Outer 1.395 1.402 0.50

6 � 103 Inner 1.712 1.736 1.38
Outer 1.712 1.735 1.32

104 Inner 1.977 2.010 1.64
Outer 1.976 2.005 1.45

2 � 104 Inner 2.375 2.405 1.25
Outer 2.372 2.394 0.92

3 � 104 Inner 2.628 2.661 1.24
Outer 2.624 2.643 0.72

5 � 104 Inner 2.971 3.024 1.75
Outer 2.965 2.973 0.27

7 � 104 Inner 3.218 3.308 2.72
Outer 3.208 3.226 0.56
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(1976a) reported for the horizontal annulus formed between iso-
thermally cooled outer and heated inner cylinders. The comparison
of the present results with those of Kuehn and Goldstein (1976a) is
given in Table 2. The results agree well with each other, the largest
difference being 2.72%.

4.6. Grid sensitivity tests

In order to select the mesh that gives reasonably accurate solu-
tions, grid sensitivity tests are conducted with five different
meshes on the conjugate problem with the number of grid points
on each diameter varying from 61 to 141 for the aspect ratio 0.2
and 65 to 193 for the aspect ratio 0.4. The other parameters are
k�s ¼ 10 and Gr = 108. Based on these tests a 121 � 121 mesh and
a 161 � 161 mesh are selected for the aspect ratios 0.2 and 0.4,
respectively, for both SOS and SOE configurations. For the CC case,
equal number of mesh spacings are employed in the radial and
angular directions and the number of mesh spacings are varied
from 60 to 100 and an 81 � 80 mesh is finally chosen. This grid
contains respectively 33 and 41 grid points in the solid region for
equivalent aspect ratios of 0.2 and 0.4.

5. Results and discussion

Results are obtained for the heat generation and outer radius
based Grashof number (Gr) ranging from 104 to 109, for solid-to-
fluid thermal conductivity ratios ðk�sÞ of 1, 10 and 100, and for
the aspect ratios (A) of 0.2 and 0.4, with air as the working medium
(Pr = 0.708) for the SOS, SOE and CC configurations. As can be seen
from the results, the heat generation based Grashof number Gr is
generally two to three orders of magnitude higher than the tem-
perature difference based Grashof number GrT. In view of this, lam-
inar steady-state flow solutions could be obtained for Gr values as
high as 109. Since the computations cover a wide parametric space,
selected results are presented.

5.1. Isotherms and streamlines

The isotherm and streamline maps are presented in the Figs. 3–
5 for the SOS, SOE and CC configurations respectively for k�s ¼ 10,
the Grashof number ranging from 105 to 108 for both the aspect
ratios.

For the SOS configuration, for A = 0.2 and at Gr = 105, the iso-
therms are nearly concentric indicating a pseudo-conductive re-
gime as called by Grigull and Hauf (1966). The corresponding
streamlines are kidney-shaped and are symmetric about the verti-
cal diameter. At Gr = 106, the isotherms in the vicinity of the solid
square become inverted egg-shaped and the contours are closely
placed at the bottom corners of the square as compared to those
at the top corners. The center of the corresponding kidney-shaped
streamlines now shifts slightly above the horizontal line passing
through the top face of the square. At Gr = 107, the isotherms are
distorted and a plume is found to develop from the top face of
the inner square cylinder. Thermal boundary layers are also ob-
served at the inner and the outer surfaces and are characterized
by the densely distributed isotherms. The strength of the circula-
tion increases and the center of rotation of the streamlines (which
is a stagnation point) moves further and lies above the horizontal
line passing through the top face. The buoyant plume above the in-
ner cylinder impinges upon the outer cylinder at the top, creating
the thinnest boundary layer. This warm fluid then moves in a
boundary layer adjacent to the outer cylinder towards the bottom.
Careful examination of the isotherms reveals that a temperature
inversion exists in part of the region between the two boundary
layers with the fluid near the cold outer surface being warmer than
that closer to the hot inner surface. The inner streamlines of the
core are stretched with the center further drifting upwards. The
fluid at the bottom of the annulus appears to be almost stagnant.

At Gr = 108, the single plume is separated into two, each of
which is found to emanate from the corner of the top face. The
mechanism for this transition may be explained as follows. In the
SOS configuration, the top face of the square cylinder is a heated
surface facing upwards. At lower Grashof numbers, the top surface
tends to produce a circulation with the fluid rising upwards from
the middle portion. The fluid rising from the vertical faces is en-
trained into the plume formed above the top surface, giving rise
to a double-eddy (one on each side of the vertical centreline) circu-
lation in the annulus. Beyond Gr = 108, the side flow is not en-
trained into the plume above the top surface but tends to rise
upwards from the side faces, due to the higher velocities. This up-
ward flow prevents the fluid from rising above the middle portion
of the top surface and produces a shear-driven circulation in an
opposite sense, i.e., with fluid descending towards the middle por-
tion and flowing out from the end portions of the top face. For
instance, in the right half of the annulus, the upper eddy has coun-
ter-clockwise circulation and the lower one has clockwise circula-
tion, with an inclined plume formed near the top right corner of
the solid. Thus in the annulus, there occurs a double plume, since
there is a symmetrically placed inclined plume in the other vertical
half. The isotherms in the solid become denser compared to those
in the fluid region. Two small cells are formed above the top face
whose circulation is in the direction opposite to that of the bigger
cells on the corresponding side, while the centers of the larger cells
move towards the outer surface. The increase in the values of the
maximum and the minimum stream function is less pronounced
because of the formation of the bicellular pattern on each side.
The stagnant region at the bottom of the annulus is found to in-
crease. For all the Grashof numbers, a refraction is observed in
the isotherms at the solid–fluid interface which is in accordance
with the heat flux continuity condition. For A = 0.4, the onset of
the double plume occurs at a lower Grashof number 107 with the
appearance of a dual flow in the annulus.

For the SOE and CC configurations, for both the aspect ratios, the
isotherms and streamlines are symmetric about the vertical center
line. Quadruple vortex cores are observed for Grashof numbers 105

and 106 in case of SOE configuration and the bifurcation from qua-



Fig. 3. Isotherm and streamline maps for the SOS configuration for k�s ¼ 10. Grashof number: a,e,i,m ? 105, b,f,j,n ? 106, c,g,k,o ? 107 and d,h,l,p ? 108. A = 0.2 for a–h and
A = 0.4 for i–p. Isotherms: (a) (0.0, 0.034 [0.0017]), (b) (0.0, 0.022 [0.0011]), (c) (0.0, 0.014 [0.0007]), (d) (0.0, 0.009 [0.00045]), (i) (0.0, 0.079 [0.00395]), (j) (0.0, 0.055
[0.00275]), (k) (0.0, 0.033 [0.00165]) and (l) (0.0, 0.022 [0.0011]). Streamlines: (e) (�3.09, 3.09 [0.309]), (f) (�11.33, 11.33 [1.133]), (g) (�25.14, 25.14 [2.514]), (h) (�37.43,
37.43 [3.743]), (m) (�3.37, 3.37 [0.337]), (n) (�14.09, 14.09 [1.409]), (o) (�27.14, 27.14 [2.174]) and (p) (�50.83, 50.83 [5.083]).
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druple vortex cores to the double vortex pattern is found to occur
at Gr = 8.1 � 106. No double plume is found in SOE and CC
configurations.

5.2. Variation of local Nusselt number

The variation of local Nusselt number along the inner and the
outer boundaries for the SOS and SOE cases for A = 0.4 and a wide
range of Grashof number is shown in Fig. 6 for k�s ¼ 1 and 10.

For k�s ¼ 1, as shown in Figs. 6a–h, the minimum value of the
Nusselt number occurs at all the corners for the SOS case, whereas
for the SOE, the minimum is found at the right and the left corners.
While the maximum values occur at the mid-points of all the faces
for the SOE configuration, the mid-points of the right and the left
faces register the maximum values of Nusselt number for the
SOS case. On the outer cylinder, while the minimum values always
occur at the bottom-most point, the maximum occurs at the top-
most point for both the SOS and SOE cases. An exception is ob-
served at the Grashof number 108 for the SOS configuration with
the maximum occurring at the points where the double plume im-
pinges on to the outer boundary. A slight dip is found at the peak of
the curve for the SOE case for which the maximum Nusselt number
on the outer boundary is found to occur just adjacent to the the
top-most point. This could be due to the adverse effect of the
sharp-edged corner on the convection heat transfer as reported
by Chang et al. (1983). In view of the fact that the faces of the
square are parallel to the coordinate lines, there occurs a disconti-
nuity in the local Nusselt number at each corner, where two local
Nusselt numbers can be computed in each direction.

While an increasing and decreasing trend occurs for each face of
the square for k�s ¼ 1, an opposite trend is observed on the inner
boundary for the case of k�s ¼ 10 as shown in Figs. 6i–p with an en-
hanced Nusselt number at the corners. This could be due to the fact
that at the higher k�s, the generated heat is diverted largely to the
corners owing to the decreased natural convective film resistance
at the corners.

Figs. 7a and b show the variations of the local Nusselt number
for the CC case for A = 0.4 and k�s ¼ 10 at the Grashof number 107

for the inner and the outer boundary, respectively. It is found that
the variation is smooth along the inner as well as the outer bound-
ary due to the absence of the sharp corners. The minimum value on
the inner boundary and the maximum value on the outer boundary
lie at the top-most points on the corresponding surfaces while the
maximum value on the inner boundary and the minimum value on



Fig. 4. Isotherm and streamline maps for the SOE configuration for k�s ¼ 10. Grashof number: a,e,i,m ? 105, b,f,j,n ? 106, c,g,k,o ? 107 and d,h,l,p ? 108. A = 0.2 for a–h and
A = 0.4 for i–p. Isotherms: (a) (0.0, 0.034 [0.0017]), (b) (0.0, 0.021 [0.00115]), (c) (0.0, 0.014 [0.0007]), (d) (0.0, 0.009 [0.00045]), (i) (0.0, 0.078 [0.0039]), (j) (0.0, 0.052 [0.0026]),
(k) (0.0, 0.033 [0.00165]), and (l) (0.0, 0.022 [0.0011]). Streamlines: (e) (�2.85, 2.85 [0.285]), (f) (�11.08, 11.08 [1.108]), (g) (�25.82, 25.82 [2.582]), (h) (�44.94, 44.94
[4.494]), (m) (�2.94, 2.94 [0.294]), (n) (�13.78, 13.78 [1.378]), (o) (�34.45, 34.45 [3.445]) and (p) (�57.17, 57.17 [5.717]).
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the outer boundary lie at the bottom-most point on the respective
surfaces. The same trend is observed for other k�s and Grashof
numbers.

5.3. Dimensionless temperature profiles

The variation of T�l;ib for the SOS and SOE configurations is pre-
sented in Fig. 8a for Gr = 108, k�s ¼ 10 and A = 0.4. The figure shows
that the variation of the local temperature is characterized by sev-
eral local maxima with local minima occurring at the corners for
the SOS and SOE configurations. Bell-shaped curves are observed
for the CC case showing that the temperature is maximum at the
top-most point and minimum at the bottom-most point of the in-
ner boundary as seen in Fig. 8b. As the Grashof number increases,
T�l;ib decrease, other parameters remaining the same. Higher k�s
lead to the evening out of the temperature variation, although
the trends remain the same for other Grashof numbers and aspect
ratios.

5.4. Variation of various quantities with Grashof number

The variation of different quantities such as T�max, T�av;ib, T�av;s and
Nuav,ib with Grashof number are presented in Fig. 9 for k�s of 1 (solid
line), 10 (dashed line) and 100 (dotted line). For convenience, the
data points for the SOS, SOE and CC configurations are indicated
with square, diamond and circle symbols, respectively.

Figs. 9a and e refer to the variation of T�max with Grashof number
for the aspect ratios 0.2 and 0.4, respectively. It is found that the
maximum temperature always occurs inside the solid region. The
T�max drops as the Grashof number increases for all k�s . However,
the drop is more rapid in the range of Grashof number 105–106.
In general, the SOE and the CC configurations yield the lowest
and the highest T�max, the SOS lying between them, sometimes
shifting towards that of SOE or that of CC. This shift, at higher Gras-
hof numbers can be attributed to the development of the double
plume, which enhances the heat transfer. It can be observed that
the change in T�max is larger for the k�s range 1–10 than for the range
10–100. In addition, the change in T�max between different config-
urations is more pronounced at higher k�s for A = 0.4.

Fig. 9b and f show the variation of the T�av;s with Grashof num-
ber. The behavior is the same as that of T�max inside the solid.
The values for the CC case are generally higher than those for the
SOS and the SOE configurations.

The variation of T�av;ib with Grashof number is presented in Fig.
9c and g. For A = 0.2, there is no significant difference between
the values for the different configurations and k�s , as can be seen



Fig. 5. Isotherm and streamline maps for the CC configuration for k�s ¼ 10. Grashof number: a,e,i,m ? 105, b,f,j,n ? 106, c,g,k,o ? 107 and d,h,l,p ? 108. A = 0.2 for a–h and
A = 0.4 for i–p. Isotherms: (a) (0.0, 0.034 [0.0017]), (b) (0.0, 0.021 [0.00105]), (c) (0.0, 0.014 [0.0007]), (d) (0.0, 0.010 [0.0005]), (i) (0.0, 0.082 [0.0041]), (j) (0.0, 0.055 [0.00275]),
(k) (0.0, 0.035 [0.00175]) and (l) (0.0, 0.024 [0.0012]). Streamlines: (e) (�3.16, 3.16 [0.316]), (f) (�11.84, 11.84 [1.184]), (g) (�25.55, 25.55 [2.555]), (h) (�47.01, 47.01 [4.071]),
(m) (�3.02, 3.02 [0.302]), (n) (�13.89, 13.89 [1.389]), (o) (�32.07, 32.07 [3.207]) and (p) (�58.17, 58.17 [5.817]).
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from the very closely spaced curves. For A = 0.4, the variation of
T�av;ib with Grashof number shows some dispersion for the different
configurations and k�s , but even this amounts to a maximum of
about 15% at Gr = 106. It can be seen that slightly higher values
of T�av;ib occur for the higher k�s for each of the configurations. The
SOE configuration yields the lowest T�av;ib compared to other config-
urations, although this difference is not very significant even for
the case of A = 0.4.

Recalling that Nuav,ib is based on T�av;ib and that for a given Gr,
fluid, aspect ratio and Ro, the heat generation and hence the heat
transfer is fixed, it can be concluded that the heat transfer coeffi-
cient aav,ib, and hence Nuav,ib will be rather insensitive to k�s in view
of the weak dependence of T�av;ib on k�s . Indeed, variation of Nuav,ib

with Grashof number presented in Fig. 9d and h, shows that it is
a weak function of k�s . It is interesting to compare and contrast this
behavior with that of Nul,ib which shows significant variation with
k�s , as can be seen from the graphs presented earlier. The average
Nusselt number increases with the Grashof number and the slope
of the curve is small in the Grashof number range of 104–105 where
a pseudo-conductive regime occurs. At A = 0.2, all the configura-
tions register lower Nusselt numbers with an increase in k�s at both
lower and higher Grashof numbers. At A = 0.4, the same trend is
observed for the SOE and the CC configurations while an opposite
behavior is found for the SOS case at higher Grashof numbers. This
could be attributed to the development of the double plume, the
effect of which is predominant at higher k�s .

The weak dependence of the Nuav,ib on the k�s indicates that the
thermal resistance offered by the convecting fluid in the annular
region is generally small, while in the solid, an adjustment be-
tween the temperature gradient and thermal conductivity occurs
while transferring a given amount of heat.

5.5. Average Nusselt number based on temperature-based Grashof
number

In addition to the above results, a temperature difference based
Grashof number GrT is determined for each set of the parameters
and the Nusselt number is plotted against GrT. From the energy
balance on the inner cylinder, the total heat generated by the cyl-
inder is equal to the heat convected from the same, i.e.,
_QvAc ¼ aav;ibðTav;ib � TobÞAib. Hence GrT is given by:

GrT ¼
Gr

Nuav;ib

Ac

Aib Ro
: ð16Þ
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Fig. 6. Variation of local Nusselt number for the SOS (dot-dash line) and SOE (Continuous line) configurations for A = 0.4. Inner boundary: (a)–(d), outer boundary: (e)–(h), for
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The factor Ac/(AibRo) equals S*/4 and R�i=2 for the square and circular
inner cylinders, respectively. In general, GrT is found to be less than
Gr by two orders of magnitude. For instance, Table 3 gives the val-
ues of Gr and GrT for k�s ¼ 10 for the SOS and CC configurations.
Fig. 10 shows the variation of Nuav,ib with GrT for various configura-
tions and for the different aspect ratios considered. This figure also
includes the results for isothermal condition on the inner boundary.

In general, the various curves for a given aspect ratio are close to
one another and here too, the differences due to the change in k�s
are small. However, from a closer examination, it can be stated that
the curves for higher k�s of 10 and 100 approach the isothermal
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Table 3
Relation between heat generation based Grashof number Gr and the average inner
boundary temperature based Grashof number GrT for k�s ¼ 10

Configuration A Nuav,ib Gr GrT

SOS 0.2 7.94 107 1.25 � 105

12.98 108 7.71 � 105

22.98 109 4.35 � 106

SOS 0.4 7.26 107 2.75 � 105

11.52 108 1.73 � 106

21.67 109 9.23 � 106

CC 0.2 8.86 107 1.27 � 105

13.50 108 8.36 � 105

21.96 109 5.14 � 106

CC 0.4 7.61 107 2.96 � 105

11.94 108 1.89 � 106

19.28 109 1.17 � 107
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case more closely for the CC and SOE configurations than for the
SOS configuration.

In the experimental investigations of natural convection in ann-
uli with differentially heated isothermal cylinders, the hotter inner
cylinder is generally heated by a condensing vapor (with the colder
outer cylinder cooled by water or liquid circulation). The present
work shows that, within the scope of the parametric studies car-
ried out, if electrical heating is used for the solid inner cylinder
with the average surface temperature of the heat generating cylin-
der taken as the temperature for defining the temperature based
Grashof number, reasonably accurate results for the average Nus-
selt number in terms of GrT and other parameters can be achieved,
even if the thermal conductivity of the inner solid cylinder is not
large and even if a truly isothermal condition along the periphery
of the inner cylinder does not exist.

On the other hand, if the interest lies in the prediction of max-
imum and average temperatures of the inner solid cylinder, as, for
example, in spent nuclear fuel casks involving a known amount of
heat generation, proper experimental investigation with due con-
sideration to the temperature distribution in the solid or the solu-
tion of the conjugate natural convection problems is indeed
necessary and important, particularly when k�s are not very high.

5.6. Correlations from computed data

The heat transfer data obtained is correlated in terms of the
parameters of the problem. The correlations for T�max are given in
the Table 4.

It can be seen that at A = 0.2, there is not much difference be-
tween the coefficients and exponents for the correlations of differ-
ent configurations for the corresponding thermal conductivity
ratios, while the difference is larger for A = 0.4. This means that
the geometry and orientation of the inner cylinder, i.e., square rest-
ing on side or edge or a circle, is important only at higher aspect
ratios. In other words, at lower aspect ratios, the outer cylinder
does not distinguish the exact geometry of the inner cylinder.

In view of the rather weak dependence of Nuav,ib on a particular
configuration and k�s , the following separate correlations, applica-
ble to each aspect ratio are obtained. In constructing each of such
correlations, the data pertaining to all the thermal conductivity ra-
tios and configurations is included. With Nuav,ib determined, Nuav,ob

can be easily found using Eq. (12).
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Fig. 10. Variation of Nuav,ib with dimensionless average temperature based Grashof number for various configurations. A = 0.2 for a,c,e and A = 0.4 for b,d,f. k�s : 1 (continuous
line), 10 (dashed line), 100 (dotted line), Isothermal inner boundary (asterisk).

Table 4
Correlations for the dimensionless maximum temperature

Configuration A k�s T�max ems Cc

SOS 0.2 1 0.1337Gr�0.1017 0.0032 0.9835
10 0.2173Gr�0.1717 0.0110 0.9802

100 0.2215Gr�0.1777 0.0161 0.9626

SOS 0.4 1 0.2881Gr�0.0794 0.0031 0.9634
10 0.4001 Gr�0.1535 0.0229 0.9305

100 0.4408Gr�0.1693 0.0325 0.9195

SOE 0.2 1 0.1342Gr�0.1030 0.0032 0.9841
10 0.2178Gr�0.1726 0.0103 0.9817

100 0.2180Gr�0.1769 0.0149 0.9650

SOE 0.4 1 0.2913Gr�0.0821 0.0028 0.9697
10 0.3852Gr�0.1509 0.0178 0.9435

100 0.4192Gr�0.1655 0.0261 0.9318

CC 0.2 1 0.1239Gr�0.0952 0.0036 0.9789
10 0.1952Gr�0.1625 0.0076 0.9846

100 0.2198Gr�0.1761 0.0104 0.9822

CC 0.4 1 0.2619Gr�0.0707 0.0031 0.9670
10 0.4036Gr�0.1511 0.0133 0.9694

100 0.4816Gr�0.1720 0.0200 0.9646
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Nuav;ib ¼ 0:4153Gr0:1883ðA ¼ 0:2; e ms ¼ 0:0130;Cc ¼ 0:9761Þ; ð17Þ
Nuav;ib ¼ 0:4336Gr0:1758ðA ¼ 0:4; e ms ¼ 0:0178;Cc ¼ 0:9576Þ: ð18Þ

In the above equations, ems denotes the mean square error and Cc,
the correlation coefficient (Cc = 1 � ems/r2, where r2 is the variance).

6. Conclusions

Two-dimensional conjugate natural convection in horizontal
cylindrical annuli formed between an inner heat generating solid
square or circular cylinder and an outer isothermal circular cylin-
der is studied numerically. Computations are also performed for
differentially heated annuli with isothermal boundaries and the
heat transfer data is found to compare favorably with that of the
conjugate problem expressed in terms of the average inner bound-
ary temperature based Grashof number.

The results show that an additional circulation driven by the
top horizontal face of the inner solid occurs on each side of the
annulus for the SOS configuration at higher Grashof numbers
for both the aspect ratios. For the SOE configuration, quadruple
vortex cores exist in the annulus up to a Grashof number of 106

for aspect ratio 0.4. For other parameter ranges the flow exhibits
double vortex cores in the annulus. The flow in the annulus is al-
ways bicellular for CC configuration. A thermal plume develops
above the heated solid in all the configurations, whereas a double
plume emerges from the upper corners in SOS configuration. A
refraction of isotherms occurs at the solid–fluid interface and
the degree of refraction is found to be higher for higher thermal
conductivity ratios.

The Nul,ib to a larger extent and the T�l;ib to a smaller extent, are
found to be sensitive to the solid-to-fluid thermal conductivity
ratio, while, interestingly, Nuav,ib and T�av;ib exhibit only a weak
dependence on the thermal conductivity ratio. The k�s has a negligi-
ble effect on the velocity fields. The behavior of various configura-
tions is almost the same for k�s of 10 and 100 indicating that the
effect of thermal conductivity is more prominent in the range 1–
10. With an inner heat generating cylinder, heat transfer data with
a Grashof number based on (Tav,ib � To) would be reasonably accu-
rate for isothermal differentially heated annuli, even though the
thermal conductivity of the heat generating cylinder is not large.
On the other hand, the maximum temperature does depend upon
the solid thermal conductivity and hence requires the solution of
the conjugate problem.



Fig. 11. Nine-point molecule for four-cell method of interface treatment.
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Appendix. Numerical treatment of the solid–fluid interface for
SOS and SOE configurations

As mentioned earlier, a four-cell method is employed for the
SOS and SOE configurations for the calculation of the interface tem-
perature. Fig. 11 shows a nine-point computational molecule with
the central node (i, j) lying on the interface. The hatched regions are
the four cells filled with either the solid or the fluid depending on
the position of the boundary point. The heat generation is set to
zero for the cell(s) filled with fluid. In view of the conduction heat
flux or combined conduction and convection flux continuity across
the internal boundaries separating the cells, only the conduction
and convective flux contributions through the outer surfaces of
each cell are considered. The net heat transfer is assumed to result
in the internal energy rise of the composite cell, which is the
ensemble of the four cells.

The energy equation in dimensionless form for any cell is:
q�kc�p;k
oT�k
ot�
þ q�kc�p;k

oðu�kT�kÞ
ox�

þ q�kc�p;k
oðv�kT�kÞ

oy�

¼ k�k
Pr

o2T�k
ox�2

þ o2T�k
oy�2

 !
þ fk

Pr
ðA:1Þ
where k is the cell number and fk is either zero or unity depending
upon the cell.

The above equation is multiplied by ðDt�DV�kÞ=Dc�, where
Dc� ¼ Rq�kc�p;kDV�k is the total heat capacity of the composite cell.
Considering the discretized equations at the mid-point (i + 1/
4, j + 1/4) of the cell 1 and at the mid-point (i � 1/2, j + 1/2) of the
cell 2, the condition of flux continuity applied at the inner interface
of cells 1 and 2 would cancel out the �k�kðoT�k=ox�Þ terms. Similar
reasoning applies to cells 2–3, 3–4 and 4–1. The discretized forms
of the individual cells are summed up in order to obtain the gov-
erning equation for the composite cell, which is used for the deter-
mination of the interface temperature. This equation involves only
the conduction and convection contributions shown by arrows in
Fig. 11. The temperature of the composite cell is taken as the aver-
age temperature of the individual cells weighted with respect to
the thermal capacitances, i.e.,
T�i;j ¼
P4

k¼1q
�
kc�p;kDv�kT�kP4

k¼1q
�
kc�p;kDv�k

ðA:2Þ
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